Water-like solvation thermodynamics in a spherically symmetric solvent model with two characteristic lengths.

نویسندگان

  • Sergey V Buldyrev
  • Pradeep Kumar
  • Pablo G Debenedetti
  • Peter J Rossky
  • H Eugene Stanley
چکیده

We examine by molecular dynamics simulation the solubility of small apolar solutes in a solvent whose particles interact via the Jagla potential, a spherically symmetric ramp potential with two characteristic lengths: an impenetrable hard core and a penetrable soft core. The Jagla fluid has been recently shown to possess water-like structural, dynamic, and thermodynamic anomalies. We find that the solubility exhibits a minimum with respect to temperature at fixed pressure and thereby show that the Jagla fluid also displays water-like solvation thermodynamics. We further find low-temperature swelling of a hard-sphere chain dissolved in the Jagla fluid and relate this phenomenon to cold unfolding of globular proteins. Our results are consistent with the possibility that the presence of two characteristic lengths in the Jagla potential is a key feature of water-like solvation thermodynamics. The penetrable core becomes increasingly important at low temperatures, which favors the formation of low-density, open structures in the Jagla solvent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of CO2 reaction with methylamine in aqueous solution: A computational study

Separation and capture of carbon dioxide from the flue gas of power plants in order to reduceenvironmental damages has always been of interest to researchers. In this study, aqueous solution ofmethylamine was used as an absorbent for CO2 capture. In order to study this reaction, DensityFunctional Theory (DFT) was employed at the level of B3LYP/6-311++G(d,p) by using theconductor-like polarizabl...

متن کامل

An Analysis of the Thermodynamics of Hydrophobic Solvation Based on Scaled Particle Theory

Synopsis A comprehensive, semi-quantitative model for the thermodynamics of hydrophobic sol-vation is presented. The model is based on a very simple premise suggested by the scaled particle theory and treats both solute and solvent molecules as hard spheres. A connection between the peculiarly large heat-capacity change for hydrophobic solvation and the large temperature dependence of the therm...

متن کامل

Predicting Solvation Free Energies and Thermodynamics in Polar Solvents and Mixtures Using a Solvation-Layer Interface Condition

We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics in numerous polar solvents, and ion solvation free energies in water–co-solvent mixtures. The first modification involves perturbing the macroscopic dielectric-flux interface condition at the solute–solvent interface with a nonlinear...

متن کامل

Temperature and length scale dependence of solvophobic solvation in a single-site water-like liquid.

The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculatio...

متن کامل

Hydrophobic collapse and cold denaturation in the Jagla model of water.

The Jagla model is a coarse-grained model of water which describes interactions between groups of water molecules by a spherically symmetric potential characterized by a hard core, a linear repulsive ramp and a long-range attractive ramp. The Jagla model qualitatively reproduces the thermodynamics and dynamics of liquid water including density and diffusion anomalies as well as certain chemical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 51  شماره 

صفحات  -

تاریخ انتشار 2007